The crystal structure of CdAs $_{2}$. By L. Č̀ervinka* and A. Hrubý, Institute of Solid State Physics, Czechoslovak Academy of Science, Prague, Czechoslovakia
(Received 14 July 1969)
CdAs_{2} has a tetragonal structure with $a=7.96, c=4.67 \AA, c / a=0.59$; measured density $5.8 \mathrm{~g} . \mathrm{cm}^{-3}$, four molecules of CdAs_{2} in the elementary cell. The space group is $D_{4}^{10}, I 4_{1} 22$. Four Cd atoms are in the $4(b)$ positions and eight As atoms in the $8(f)$ positions, with $x=0.06 \pm 0.01$.
CdAs_{2} was prepared by direct synthesis of stoichiometric quantities of the elements in an evacuated quartz ampoule. Cadmium, refined by multiple sublimation and by zonal melting, had a purity 6 N ; arsenic, from which oxygen and water were removed by heating to $300^{\circ} \mathrm{C}$ in a vacuum of $10^{-5} \mathrm{mmHg}$, had a purity 5 N . The synthesis itself was achieved by slow heating to $\mathrm{ca} .700^{\circ} \mathrm{C}$. After reaction had finished, the ampoule was taken out of the furnace and left to cool freely in air. The cooling rate is critical, for rapid cooling may cause metastable solidification with decomposition to $\mathrm{Cd}_{3} \mathrm{As}_{2}$ and arsenic (Scheil \& Kalkuhl, 1961; Hansen \& Anderko, 1958).

No preliminary crystallographic information was available. According to a private communication by Senko \& Stemple cited in a paper by Silvey, Lyons \& Silvestri (1961), this compound should be tetragonal with parameters $a=$ $4 \cdot 65, c=7.93 \AA$. Silvey et al. (1961) further pointed out that CdAs_{2} should have properties similar to ZnAs_{2}, another compound of the $A^{\text {II }} B_{2}^{\mathrm{V}}$ type. ZnAs_{2} has been reported as orthorhombic with $a=7 \cdot 72, b=7 \cdot 99, c=36 \cdot 28 \AA$ (Stackelberg \& Paulus, 1935) and as primitive monoclinic with $a=9 \cdot 28, b=7 \cdot 68, c=8.03 \AA, \beta=102^{\circ} 19^{\prime}$ (Senko, Dunn, Weidenborner \& Cole, 1959). Furthermore, similarity might be expected with such other compounds of the $A^{11} B_{2}^{V}$ group as ZnP_{2} (tetragonal with $a=5.07, c=18.65 \AA, c / a=3.69$) or CdP_{2} (tetragonal with $a=5 \cdot 28, c=19.70 \AA, c / a=3.73$) (Stackelberg \& Paulus, 1935).

Contrary to the above expectations, X-ray analysis of CdAs_{2} powder samples (only polycrystalline material was available) using a Guinier camera with monochromatized $\mathrm{Cu} K \alpha(\lambda=1.5418 \AA)$ radiation showed that this compound has a tetragonal structure with lattice parameters $a=7.95_{6}$, $c=4 \cdot 67_{4} \AA$ and $c / a=0.58_{7}$.

Table 1 gives the observed intensities relative to the most intense line 211 and the calculated d values, which are in good agreement with the experimental values.

The density of CdAs_{2} was found to be $5.8 \mathrm{~g} . \mathrm{cm}^{-3}$, this value being in good agreement with the value $5 \cdot 88 \mathrm{~g} . \mathrm{cm}^{-3}$ calculated on the basis of four molecules of CdAs_{2} in the unit cell.

Further analysis of experimental data based on the absences and intensities of the first 39 lines of the powder pattern enabled the structure of this compound to be determined.

The space group is $D_{4}^{10}, I 4_{1} 22$, and the four Cd atoms are in the $4(b)$ positions with coordinates $\left(0,0, \frac{1}{2}\right) ;\left(0, \frac{1}{2}, \frac{3}{4}\right)$; the eight As atoms are in the $8(f)$ positions with coordinates $\left(x, \frac{4}{4}, \frac{1}{8}\right) ;\left(\bar{x}, \frac{3}{4}, \frac{1}{8}\right) ;\left(\frac{4}{4}, x, \frac{7}{8}\right) ;\left(\frac{3}{4}, \vec{x}, \frac{7}{8}\right) ;$ coordinates of equivalent positions are $\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. The parameter x for the

[^0]$8(f)$ sites giving best agreement with experimental data was found to be $x=0.06 \pm 0.01$. In Fig. 1 the projection of the structure onto the $x y$ and $x z$ planes is illustrated with supposed bonds between atoms.

The authors thank the Max Planck Society for support,

Fig. 1. Projection of the CdAs_{2} structure on to the $x y$ and $x z$ planes together with the supposed bonds between atoms (dashed lines).

Table 1. Interplanar distances (\AA) (calculated and observed) and relative intensities in CdAs_{2}

$h k l$	$d_{\text {calc }}$	$d_{\text {obs }}$	I	hkl	$d_{\text {calc }}$	$d_{\text {obs }}$	I
110	$5 \cdot 625$	$5 \cdot 62{ }_{3}$	44	103	1.529	$1.53{ }_{1}$	15
101	4.030	4.011	4	402	1.515	1.515	2
200	3.977	3.976	46	$\left.\begin{array}{l} 431 \\ 501 \end{array}\right\}$	1.506	$1 \cdot 508$	9
211	$2 \cdot 831$	$2 \cdot 823$	100	332	1.462	$1 \cdot 465$	6
310	2.516	$2.51{ }_{5}$	4	213	1.427	1.429	3
301	2.306	${ }^{2} \cdot 30_{6}$	6	422	1.415	1.417	4
112	$2 \cdot 158$	$2 \cdot 16_{1}$	26	521	1.409	$1 \cdot 40_{7}$	4
202	2.015	$2.01{ }_{6}$	29	440	1.406	$1 \cdot 40_{6}$	7
321	1.995)	1.993	35	303	1.343	1.345	7
400	1.989 \}	1.993	18	512	1.298	$1 \cdot 299$	8
330	1.875	1.875	11	323	$1 \cdot 273$	1.274	4
411 420	$\left.\begin{array}{l}1.783 \\ 1.779\end{array}\right\}$	$1.78{ }_{2}$	12	611 620	1.259 1.258	$1 \cdot 259$	13
312	1.712	$1.71{ }_{3}$	34	413	$1 \cdot 212$	$1 \cdot 213$	13
510	$1 \cdot 560$	1.559	3	541	1.201	$1 \cdot 201$	6
				532	$1 \cdot 178$	$1 \cdot 179$	11

Prof. R. Hosemann for stimulating discussions and W. Senko, M. E., Dunn, H. M., Weidenborner, J. \& Cole, H. Vogel for help with the preparation of computer programs.

References

Hansen, M. \& Anderko, K. (1958). Constitution of Binary Alloys. New York: McGraw Hill.
(1959). Acta Cryst. 12, 76.

Schell, E. \& Kalkuhl, A. (1961). Z. Metallk. 52, 557.
Silvey, G. A., Lyons, V. J. \& Silvestri, V. J. (1961). Trans. Electrochem. Soc. 108, 653.
Stackelberg, M. von \& Paulus, R. (1935). Z. Phys. Chem. B28, 427.

[^0]: * A part of this work was done during a stay in the FritzHaber Institute of the Max Planck Gesellschaft, Berlin-Dahlem.

